研究领域

我的主要科学兴趣是沉积岩石学,成岩作用, 地质碳封存,环境和石油地质. 我的话题 目前正在进行的工作包括:

  • 诱发地震活动的地质控制
  • 碳酸盐岩胶结作用、流体流动、微生物活性与储层的关系 碎屑沉积岩渗透率非均质性研究.
  • 对断裂带胶结作用的控制、流体的流动和断裂带的关系 成岩作用到渗透率.
  • 石油系统的储层/密封分析和建议的碳封存点

出版物

凯瑟,M.罗斯科斯,D.加拉格尔,S.特鲁希略,n.n.凯瑟,S.霍林沃, R.S., Mozley, P.S.李瑞,R.J.沉积成岩作用与层序地层学研究 法尔斯沃斯的宾夕法尼亚Morrowan和Atokan区间单位:能量,v. 14日,doi.org/10.3390/en14041057.

巴恩斯,H.伊诺霍萨,J.R.斯皮内利,G.A., Mozley, P.S.科宁,D.斯普劳尔,T.G.威尔逊,J.L., 2021,断层带特征检测 用电阻率法切割古山谷:新墨西哥州洛马布兰卡断层; 地球物理学,v. 86, p. 1-53.

Sproule T.G,斯皮内利,G.A.威尔逊,J.L.马萨诸塞州堡市.D., Mozley, P.S.J . Ciarico.地质学报,2020,断裂带胶结对地下水的影响 野外尺度上的流量:地下水,doi.org/10.1111 / gwat.13062.

皮特里,E.S.布拉德伯里,K.K.库奇奥,L.史密斯,K.埃文斯,J.P.奥尔蒂斯,P.肯纳, K., Person, M., Mozley, P.中国地质大学学报(自然科学版),2020,利用露头和岩心类比物对不整合面进行地质表征; 注入诱发地震活动性的水文意义:固体地球,5. 5., p. 1803-1821.

吴,Z.卢曼,A.J.莱因哈特,A.J., Mozley, P.S.杜尔斯,T.A.希斯,J.E.马宗达,B.S., 2020,化学-机械变化 CO诱导2 碳酸盐岩胶结砂岩在71°C和29°C条件下的注入实验研究 地球物理学报:英文版:固体地球. 125年,doi.org/10.1029/201JB019096.

Yoon H.英格拉姆,M.D.格里格,J.罗萨迪克,B.莱因哈特,A.穆克,W.M.Dewers, T., Mozley, P., 2020,沉积成岩非均质性对多尺度力学的影响 美国新墨西哥州和犹他州Mancos页岩的动态. In: Camp, W.K.纽约州菲什曼(Fishman.S., 哈克利,P.C.麦夸克,J.H.S,米利肯,K.L.泰勒,K.G. (Eds.)、泥岩成岩作用: 页岩油气储层、封印和烃源岩研究展望,美国 石油地质学家协会,回忆录120页. 121-148.

威廉姆斯,R.T., Mozley, P.S.夏普,W.D.L .古德温.B.地质学报,2019,同构造方解石脉U - Th定年 揭示断裂裂缝胶结和愈合的动力学性质:AGU地球物理 研究通讯,v. 46. p. 12900 - 12908年,doi.org/10.1029/2019GL085403.

Dewers T.希斯,J.尹浩.英格拉姆,M.格里格,J.莫兹利,P.昆塔纳,E., Karpyn Z., 2019,页岩多物理场孔隙-岩心表征; in维耶尔,S.阿霍-富兰克林,J.凯里,WJ.W., eds.地质碳储存: 地下封印与盖层完整性:美国地球物理联合会,地球物理专著 238, 45 - 70.

奥尔蒂斯,J.P., Person, M.A.莫兹利,P.S.埃文斯,J.P.比莱克,S.L., 2018,角色 断层带构造要素对孔隙压力传播和诱发地震活动性的影响 地下水(受压); doi: 10.1111/gwat.12818.

威廉姆斯,R.T.比尔德,B.L.L .古德温.B.夏普,W.D.约翰逊,C.M.莫兹利, P.S.2018年,放射性同位素记录了“沧海一粟”——数公里尺度的指纹 推断流体路径驱动断阀行为:构造地质学杂志 (新闻), http://doi.org/10.1016/j.jsg.2018.07.023

威廉姆斯,R.T.L .古德温.B.夏普,W.D.莫兹利,P.S., 2017年,40万年的记录 板内断层的地震频率分析:美国国家科学院院刊 科学,,,v .. 114日,doi: 10.1073 / pnas.1617945114..

威廉姆斯,R.T.L .古德温.B.莫兹利,P.S., 2017,成岩作用对演化的控制作用 断裂带构造与渗透构造:对断裂带的启示 伸展盆地流体输运:GSA公报,5. 129, p. 464-478, doi: 10.1130/B31443.1.

Ampomah W.巴尔奇,R.凯瑟,M.罗斯科斯,D.,振学,D.希斯,J.Dewers, T.莫兹利,P., 2016, CO评价2 一氧化碳储存机制2 提高采收率地点:在Morrow砂岩油藏中的应用:能源和油气 燃料,v. 30, p. 8545-8555, doi: 10.1021.

张,Y.埃德尔,S.佩平,J., Person, M.布罗德海德,R.奥尔蒂斯,J.比莱克,S.Mozley, P.埃文斯,J.探讨油田盐水回注、 结晶基底渗透率,并引发了Dagger Draw油田的地震活动 美国新墨西哥州东南部的油田,使用水文建模:geofluid, v. 16, p. 971-987, doi: 10.1111 /金五环.12199.

Mozley P.S.希斯,J.杜尔斯,T.鲍尔,S., 2016,起源与异质性 西蒙山砂岩和欧克莱尔组孔隙大小特征及其意义 对于多相流体流动:地圈,v. 12, p. 1日到21日,doi: 10.1130 / GES01245.1.

Raduha,年代.巴特勒博士.莫兹利,P., Person, M.埃文斯,J.希斯,J.杜尔斯,T., Stauffer P.盖博,C.Kelkar, S.2016年,潜在的密封旁路和盖层储存 由储/盖层变形带-开闭模式-裂缝过渡产生 界面:地流体,v. 16, p. 752-768, doi: 10.1111 /金五环.12177.

El-Shawaihdi, M.H., Mozley, P.S.波阿斯,n.n.T.萨卢姆,F.帕夫拉基斯,P.穆夫塔,A.和Triantaphyllou, M., 2016,利比亚东北部Sirt盆地新近系Sahabi单元地层学研究; 非洲地球科学学报,第5期. 118, p. 87-106.

威廉姆斯,R.T.L .古德温.B.莫兹利,P.S.比尔德,B.L.约翰逊,C.M., 2015, 构造对新墨西哥州b里约热内卢大裂谷断裂带流动路径的控制 美国:地质学,doi: 10.1130/G36799.1

Rainoldi,.L.Franchini, M.博福特,D.莫兹利,P.朱西亚诺,A.Cesaretti, N.P.Impiccini, A.庞斯,J., 2015,矿物反应与 阿根廷neuquimassn盆地Huincul高地油气古运移:地质 美国学会公报, doi: 10.1130/B31201.1.

戴尔,.,约翰,C.M.莫兹利,P.S.,斯莫利,P.C.马格里奇,A.H., 2014,时间胶囊 结核:利用碳酸盐解开曼科斯页岩的埋藏成岩过程 团块同位素:地球与行星科学快报,5. 394, p. 30-37.

El-Shawaihdi, M.H.穆夫塔,A.M.莫兹利,P.S.波阿斯,N.T., 2014,新时代约束 利用锶同位素对利比亚(锡尔特盆地)萨哈比地区新近系沉积物进行了研究 (87Sr/86地质年代学与钙质纳米化石;非洲地球科学杂志; v. 89, p. 42-49.

张,Y., Person, M.拉普,J.艾里特,K.西莉亚,M.A.盖博,C.W.鲍文,B.埃文斯, J.班迪拉,K.莫兹利,P.S.杜尔斯,T.艾略特,T., 2013,水文地质控制 基岩注入流体引起的结晶性地震活动性研究 水库:地下水. 51, p. 525-538.

希斯J.E.杜尔斯,T.A.麦克弗森,B.J.彼得鲁萨克,R.奇德西,T.C. Jr.莱因哈特, A.J.莫兹利, P.S.科学通报,2011,陆相和海相泥岩孔隙网络特征及其影响因素 对密封行为的控制:地圈,v. 7, p. 429-454.

白色,R.斯皮内利,G.A.莫兹利,P.S., N.W. 邓巴,2010,火山的重要性 玻璃蚀变对沉积物稳定性的影响,日本近海:沉积学,5. 58, p. 1138-1154.

Seright R.S.坎贝尔,A.R. 莫兹利,P.S., 2009,部分水解的稳定性 高温下缺乏二价阳离子的聚丙烯酰胺:社会 石油工程,SPE杂志,121460,p. 1–15. doi:10.2118/121460-MS

卢卡雷利,G.A.莫兹利,P.S.托宾,H.J.霍夫曼,n.n.安德伍德,M.B., 2007, 沉积物强度与孔隙崩塌的成岩控制作用探讨 南开海槽俯冲带:美国地质学会通报,5. 119, p. 337-390.

Mozley P.S.伯恩斯,S.J., 2006,全新世滩岩遗址的气候意义 讨论:美国石油地质学家协会 公告,v. 90, p. 971-973.

Delude-Roy N.戴维斯,J。.M.莫兹利,P.S.霍尔,J.S., 2006,碳酸盐的影响 河流含水层渗透率非均质性的胶结作用:沉积地质学 (关于沉积含水层非均质性的特刊),v .. 184, p. 267-280. doi: 10.1016/j.sedgeo.2005.11.005. 摘要.

Mozley P.S.戴维斯,J。.M., 2005,伸长体的内部结构与生长方式 方解石结块:微生物诱导的小规模化学异质性的证据 地下水:美国地质学会通报117(11):1400-1412. doi: 10.1130/B25618.1. 摘要.

本斯J.P.莫兹利,P.S.Dunbar, n.n.W., 2005,粘土在铁运输中的重要性 和沉积物变红:来自Abo组还原特征的证据,新 墨西哥:沉积研究杂志,5. 75(4), p. 562-571.

大厅,J.S.莫兹利,P.S.戴维斯,J。.M.纽约州的鲁德-罗伊(delde - roy)., 2004,地层环境 上更新世河流方解石胶结作用空间分布的控制因素 中国地质大学学报:自然科学版(英文版). 74(5), p. 643-653.

Mozley P.S., 2002,成岩构造,《AG亚游集团app》 岩石(Ed. 通过G. 米德尔顿):Kluwer学术出版社,219-225.

古德温,.B.莫兹利,P.S.摩尔,J.C.Haneberg, W.C., 1999,断层与地下 浅层地壳中的流体流动:导论,inW . Haneberg.C.莫兹利,P.S., 摩尔,J.C.和L .古德温.B., eds.、浅层断裂与地下流体流动 地壳, AGU专著113, p. 1-5.

Heynekamp, M.R.L .古德温.B.莫兹利,P.S.Haneberg, W.C., 1999年,控制 新墨西哥州大裂谷里约热内卢低岩化沉积层中的断裂带构造; 断层带渗透率与流体流动的关系,inW . Haneberg.C.Mozley, P.S.摩尔,J.C.和L .古德温.B., eds.,断层与地下流体流动 浅层地壳, AGU专著113, p. 27-49.

Sigda J.M.L .古德温.B.莫兹利,P.S.威尔逊,J.L., 1999,渗透性变化 在弱固结沉积物中的小位移断层中:中央里约热内卢Grande 裂谷,新墨西哥州,在,Haneberg, W.C.莫兹利,P.S.摩尔,J.C.和L .古德温.B., eds.、浅层地壳断裂与地下流体流动; AGU专著113, p. 51 – 68.

惠特沃思T.M.W . Haneberg.C.莫兹利,P.S.和L .古德温.B., 1999,溶质筛分 石英砂粉上诱导方解石析出 ?? 实验结果及 断层泥膜行为的意义,inW . Haneberg.C.Mozley, P.S.摩尔,J.C.和L .古德温.B., eds.,断层与地下流体流动 浅层地壳, AGU专著113, p. 149-158.

克莱恩J.S.莫兹利,P.S.坎贝尔,A.科尔,R., 1999,空间分布 横向广泛的碳酸盐胶结层的碳氧同位素:意义 生长模式和地下识别:沉积研究杂志; v. 69, p. 184-201.

Beckner J.莫兹利,P.S., 1998,早期潜水的起源与空间分布 和美国新墨西哥州阿尔伯克基盆地Zia组的气相方解石胶结物, in, S. Morad ed.砂岩中的碳酸盐胶结物:国际沉积学家协会 特别出版物第26页. 27-51.

兰伯特,M.R.科尔,r.r.D.莫兹利,P.S., 1997,渗透率非均质性的控制 新墨西哥州西北部Tocito砂岩(上白垩纪):in, Anderson, O. Kues, B.S., eds.,新墨西哥地质学会指南,第48届野外会议, 四角地区中生代地质与古生物学,p. 217-228.

Mozley P.S.碳酸盐结块的内部结构:一个重要的评价 固结生长的同心模式:沉积地质,5. 103, p. 85-91.

Mozley P.S., 戴维斯J.M.D., 1996,取向方解石结块与渗透率相关性的关系 新墨西哥州Sierra Ladrones地层的冲积含水层结构:Journal of 沉积研究,5. A66, p. 11-16.

Mozley P.S.贝克纳,J.惠特沃思,T.M., 1995,方解石的空间分布 新墨西哥州阿尔伯克基盆地Santa Fe Group的水泥:对地下水的影响 资源:新墨西哥地质,特刊:阿尔伯克基盆地-水文地质研究, v. 17, p. 88-93.

Mozley P.S., 古德温,., 1995,新生代正断层胶结模式:古流动记录 方向:地质学,v. 23, p 539-542.

Mozley P.S.伯恩斯,S.J., 1993,海洋氧和碳同位素组成 碳酸盐结核:综述;答复:沉积岩石学报,5. 63, p. 1008.

Mozley P.S.和Wersin, P., 1993,菱铁矿同位素组成指标 沉积环境:回复:地质学,v .. 21, p. 380.

Mozley P.S.伯恩斯,S.J., 1993,海洋氧和碳同位素组成 碳酸盐结核:综述;沉积岩石学杂志,5. 63, p. 73-83.

Mozley P.S.卡罗瑟斯,W., 1992, Kuparuk组菱铁矿地球化学, 阿拉斯加:水/沉积物相互作用和微生物活动对早期孔隙水的影响 化学,沉积岩石学报,5. 62, p. 681-692.

Mozley P.S.和Wersin, P., 1992,菱铁矿同位素组成指标 沉积环境:地质学,5. 20, p. 817-820.

Mozley P.S.霍恩尔,K., 1990,凹陷碳酸盐胶结物地球化学 阿拉斯加州北坡三叠纪/侏罗纪河流和Shublik组:意义 地层水地球化学演化:沉积学,5. 37, p. 817-836.

Mozley P.S., 1989,固结菱铁矿的复杂成分分区:意义 地球化学研究:沉积岩石学报,5. 59, p. 815-818.

Mozley P.S., 1989,沉积环境与元素组成的关系 早期成岩菱铁矿:地质学,5. 17, p. 704- 706.